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Generalized Linear Models (brief)

Bayesian Iteratively Weighted Least Squares (BIWLS)
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Small example

Chase Joyner A clever proposal distribution for Metroplis-Hastings



Motivation

Suppose you �ip a fair coin 100 times and recorded 64

heads and 36 tails.

The sample percentage of heads is 0.64, but

P (heads) = 0.5.

A priori of �ipping the coin, we believe it to be fair. We

can use this.

Looking for your phone.

Nate Silver used Bayesian statistics to

o predict the results of the 2008 presidential election and got

49 out of the 50 states correct.

o predict the results of the 2012 presidential election and got

50 out of the 50 states correct.
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Bayesian Inference

Bayesian inference uses Bayes rule to obtain a posterior

distribution.

A priori information speci�ed through a prior distribution,

denoted π(θ).

Likelihood function, denoted f(y|θ), speci�ed by the data.

f(θ|y) = f(y|θ)π(θ)
f(y)

=
f(y|θ)π(θ)∫

Θ f(y|θ)π(θ)dθ
∝ f(y|θ)π(θ)

f(θ|y) is the posterior distribution. It is an update of π(θ)
after seeing y.
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Metropolis�Hastings

The posterior distribution f(θ|y) not of any known form.

Want to obtain a sequence of samples {θ(1), ...,θ(s)} to
empirically estimate θ.

Intuitively, include new θ? if its posterior density is greater
than current θ(t), else accept it with probability r.

o r = f(θ?|y)
f(θ(t)|y)

J(θ(t)|θ?)
J(θ?|θ(t))

= f(y|θ?)π(θ?)
f(y|θ(t))π(θ(t))

J(θ(t)|θ?)
J(θ?|θ(t))

Propose θ? from some proposal distribution, denoted J .

o Use this proposal distribution to calculate
J(θ(t)|θ?)
J(θ?|θ(t))

in r

above. This is the correction factor, in case θ? is more likely

to be proposed than θ(t). Otherwise, θ? will be

over�represented in our sequence.
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Metropolis�Hastings cont.
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Metropolis�Hastings cont.

The Metropolis�Hastings algorithm is as follows:

1 Given initial values θ(0), set t = 1.

2 Propose θ? from proposal distribution J .

3 Compute acceptance ratio

r = f(θ?|y)

f(θ(t)|y)

J(θ(t)|θ?)

J(θ?|θ(t))
= f(y|θ?)π(θ?)

f(y|θ(t))π(θ(t))

J(θ(t)|θ?)

J(θ?|θ(t))
.

4 Set θ(t+1) = θ? with probability min{1, r}, θ(t+1) = θ(t)

otherwise.

5 Increment t by 1 and return to step 2.

The proposal distribution greatly a�ects the chain

{θ(1), ...,θ(s)}. What to do if a nice proposal distribution is

hard to �nd?
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Generalized Linear Models (GLM)

Three major components of a GLM:

Random component: conditional distribution of Yi given
covariates xi, which is a member of the exponential family,

i.e.

f(yi|xi) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
where θi depends on the covariates and parameters.

Linear predictor: ηi = xTi β.

Link function: g(µi) = xTi β, where g is di�erentiable and

invertible.
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Bayesian Iteratively Weighted Least Squares (BIWLS)

In the situation where covariates are included, β becomes

an unknown parameter of interest. It can be di�cult to

�nd a good proposal distribution for β.

Placing a normal prior N(a,R) on β, the posterior
distribution of β takes form

f(β | y) ∝ exp

{
−1

2
(β − a)′R−1(β − a) +

∑
i

yiθi − b(θi)
φ

}
.

Approximating this posterior distribution would be a good

choice for the proposal distribution.
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Bayesian Iterative Re�weighted Least Squares cont.

Consider a transformation of the data and weight matrix:

ỹi(β) = ηi + (yi − µi)g′(µi) and Wi(β) =
1

b′′(θi)g′(µi)2
.

Carrying out a second order Taylor expansion of the

likelihood term ∑
i

yiθi − b(θi)
φ

about β(t−1) results in an approximation of f(β | y) to be a

normal distribution with mean and covariance

m(t) = C(t) ×
(
R−1a+

1

φ
X′W(β(t−1))ỹ(β(t−1))

)
C(t) =

(
R−1 +

1

φ
X′W(β(t−1))X

)−1

.

This means J = N(m(t),C(t)).
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BIWLS cont.

Here we summarize Bayesian IRWLS:

1 Given initial values β(0), set t = 1.

2 Propose β? from proposal distribution J = N
(
m(t),C(t)

)
.

3 Compute acceptance ratio r.

4 Set β(t+1) = β? with probability min{1, r}, β(t+1) = β(t)

otherwise.

5 Increment t by 1 and return to step 2.

NOTE: Correction factor in r is necessary! Numerator is density

of β(t) from N(m?,C?) and denominator is density of β? from
N
(
m(t),C(t)

)
.
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BIWLS cont.
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Example

Assume the independent data yi ∼ Bern(pi), where we
impose the logistic link

g(pi) = log
pi

1− pi
= x′iβ =⇒ pi =

exp{x′iβ}
1 + exp{x′iβ}

.

Then the likelihood function is given by

f(y) =

n∏
i=1

pyii (1− pi)
1−yi

= exp

{
n∑
i=1

[
yi log

pi
1− pi

+ log(1− pi)
]}

= exp

{
n∑
i=1

[
yix
′
iβ − log

(
1 + ex

′
iβ
)]}

.
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Example cont.

Therefore the posterior distribution for β is given by

f(β | y) ∝ exp

{
− 1

2
(β − a)′R−1(β − a)

+

n∑
i=1

[
yix
′
iβ − log

(
1 + ex

′
iβ
)]}

.

Here, θi = x′iβ, b(θi) = log
(
1 + eθi

)
, φ = 1.
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Conclusion

BIWLS improves the acceptance rate in a good way to

speed up convergence.

Could always accept proposed value, but usually not a good

idea.

Initial starting point can sometimes a�ect the BIWLS

algorithm.

Easily extended to mixed e�ects models, just a�ects terms

associated with the linear predictor or link function.
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